In set theory, a continuous function is a sequence of ordinals such that the values assumed at limit stages are the limits (limit suprema and limit infima) of all values at previous stages. More formally, let γ be an ordinal, and s := s α | α < γ {\displaystyle s:=\langle s_{\alpha }|\alpha <\gamma \rangle } be a γ-sequence of ordinals. Then s is continuous if at every limit ordinal β < γ,

s β = lim sup { s α : α < β } = inf { sup { s α : δ α < β } : δ < β } {\displaystyle s_{\beta }=\limsup\{s_{\alpha }:\alpha <\beta \}=\inf\{\sup\{s_{\alpha }:\delta \leq \alpha <\beta \}:\delta <\beta \}}

and

s β = lim inf { s α : α < β } = sup { inf { s α : δ α < β } : δ < β } . {\displaystyle s_{\beta }=\liminf\{s_{\alpha }:\alpha <\beta \}=\sup\{\inf\{s_{\alpha }:\delta \leq \alpha <\beta \}:\delta <\beta \}\,.}

Alternatively, if s is an increasing function then s is continuous if s: γ → range(s) is a continuous function when the sets are each equipped with the order topology. These continuous functions are often used in cofinalities and cardinal numbers.

A normal function is a function that is both continuous and strictly increasing.

References



Set theory and relation

PPT Basics of Set Theory PowerPoint Presentation, free download ID

Set Theory Discrete Mathematics Study Notes (Part2) Know the Set

Definition of Continuous Function eMathHelp

نظریه مجموعه ها و فرضیه پیوستگی وبلاگ کتابخانه دیجیتال بلیان